# Dust, Smoke, and Sea Salt Concentrations Simulated during CRYSTAL-FACE with MATCH/CARMA

Peter Colarco, GEST/UMBC, NASA GSFC Brian Toon, LASP/PAOS, University of Colorado

#### Data from:

Paul De Mott, Mike Poellot, Si-Chee Tsay, Judd Welton, James Campbell, Joe Prospero, MODIS and TOMS science teams

#### Motivation

- Simulate dust, sea salt, and smoke aerosol concentrations during CRYSTAL-FACE
- Lend context to aerosol observations made during the experiment
- Assist in interpretation of radiation measurements

#### MATCH/CARMA

- 3D aerosol transport model
- ■Driven by NCEP reanalyses (~ 2° x 2°, 28 vertical layers)
- Physics are from NCAR MATCH model
- Fields are subsetted to a region of interest and fed into CARMA
- CARMA does sources, transport, and removal
- Resolve 8 size bins from  $0.1 10 \mu m$  radius

#### Sources

Dust: Ginoux et al. [2001]

Sea Salt: Monahan et al. [1986]

Smoke: not yet!

Removal

Sedimentation

**Dry Deposition** 

Wet Removal

## Smoke: June 29, 2002



# MODIS-TERRA





# TOMS: July 1, 2002



## TOMS: July 3, 2002



## MPL at eastern ground site



# Back trajectories: July 3, 2002



### Sea Salt

#### Sea salt fluxes are wind speed dependent



Model Sea Salt Surface Mass Concentration [µg m<sup>-3</sup>]

### **Dust Sources**

- Dust sources are located preferentially in topographic lows
- ■Sources are wind speed, soil moisture dependent





## **AOD** near Sources





## **AOD** far from Sources







### Surface dust masses



Model Dust Surface Mass Concentration [μg m<sup>-3</sup>]

# July 29, 2002

Both the model and the MPL see an elevated dust layer between 2 and 4 km





## Comparison to aircraft profile



## Volume profile



## Dust/Sea Salt Size Distribution



# Sensitivity Tests





# Sensitivity Test: Add a Coastal Source



## Vertical Profile with Coastal Source



#### Mass with Coastal Source

- No wet simulations put too much dust at the surface
- The added coastal source elevates the surface concentration



Model Dust Surface Mass Concentration [μg m<sup>-3</sup>]

### Size Distribution with Coastal Source



# Is this source in MODIS-Terra?

MOD021KM.A2002202.1155.003.2002202233649.hdf



# Is this source in MODIS-Aqua?

MYD021KM,A2002202.1455.003.2002205035054.hdf



#### Conclusions

- Evidence for long-range transport of smoke over Florida
- ■The dust model shows dust at the right altitude on July 29
  - Not enough dust to match the lidar extinction
  - Surface concentrations are too low
- Turning off wet removal makes the rest of the simulation look worse
- Increasing the source or adding a coastal source can help, but what's the evidence for this?
- Possibly the wind fields are not right..?

#### **Future Directions**

- Further evaluation of the sea salt source
- Include smoke aerosol in the simulation for the CF time frame
- Try another wind source for the dust
  - emissions
  - transport
- Further investigate the removal mechanisms at play here

Acknowledgement: Thanks to Leslie Lait for some quick computer help!



